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Introduction: Proteus spp. are opportunistic members of Enterobacteriaceae, 

accounting for 10% of urinary tract infections and other primary clinical 

infections. They produce extended-spectrum beta-lactamases (ESBL) that can 

confer resistance to beta-lactam antibiotics. This study aimed to investigate the 

prevalence, antimicrobial susceptibility, molecular characteristics, and genetic 

relationship of ESBL-producing Proteus spp. clinical isolates in Babol, 

Northern Iran. Methods: In this cross-sectional study, out of 112 clinical 

samples, 30 Proteus spp. isolates were identified via specific biochemical 

assays. According to the Clinical and Laboratory Standards Institute (CLSI) 

guidelines, antibiotic susceptibility was evaluated using disc diffusion and agar 

dilution methods, and polymerase chain reaction (PCR) was used to detect 

blaTEM and blaSHV genes. Results: The resistance rate to tetracycline and 

sulfamethoxazole was highest by disk diffusion and agar dilution. Multiple 

drug-resistant (MDR) isolates were 86% and 60% in disk diffusion and agar 

dilution assays. Seven (23.3%) isolates had the blaTEM genes and 18 (60%) 

blaSHV. Conclusion:  ESBL-producing Proteus spp. was highly prevalent, 

and the blaSHV was the most common resistance contributing gene. These 

findings and relatively high resistance to ampicillin demand more care in 

prescribing antibiotics. Also, the high prevalence of MDR isolates in patients 

infected with ESBL-producing Proteus spp. requires continuous surveillance.  
 

INTRODUCTION 

Proteus spp. are opportunistic members of 

Enterobacteriaceae responsible for 10% of urinary tract 

infections, cystitis, polio-nephritis, prostatitis, ulcer, eye, 

and intra-abdominal infections. Proteus vulgaris, Proteus 

mirabilis, and Proteus penneri are common pathogens 

affecting immunosuppressed individuals. Also, Proteus 

members cause ~15% of nephrolithiasis through 
alkalinization. These bacteria were documented as 

extended-spectrum beta-lactamase (ESBL)-producers in 

1987 [1]. Extended-spectrum β-lactamase (ESBL) 

producing Enterobacteriaceae is a public health concern 

worldwide [2, 3]. They produce enzymes responsible for 

the hydrolysis of oxyimino-beta-lactam antibiotics [4]. 

The spread of β-lactam antibiotic-resistant isolates occurs 

by a wide range of ESBL genes, e.g., blaTEM and 

blaSHV [5, 6]. These narrow-spectrum β-lactamases are 

located on plasmid cassettes and contribute to resistance 

to β-lactam antibiotics. The rapid increase in 

cephalosporin-resistant Enterobacteriaceae 

containing blaTEM and blaSHV genes poses a major 

therapeutic challenge [6-8]. 

Misusing antibiotics has led to the spread of multi-drug 

resistant (MDR) strains, making it a significant challenge 

for the medical community. The ESBL resistance 

increases over time. In community-onset,  there is a 0.91% 

yearly increase in ESBL, while in healthcare onsets, it 

reaches up to 2.31%. In some countries, the phenotypic 

ESBL production is estimated at 65% in 

Enterobacteriaceae isolates, and in Europe, ESBL 

antibiotics were the first-line therapy for the associated 
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infectious diseases. Therefore, the first reports of 

resistance to ESBL antibiotics came from Europe, and it 

did not take long for similar reports to be received from 

around the world [9-13]. The gradual evolution of 

antibiotic-resistant strains has led to the expression of 

resistance genes in antibiotic-sensitive bacterial strains 

through gene mutation and horizontal gene transfer, 

increasing the MDRs prevalence worldwide [14, 15]. The 

class I integron is a common factor in distributing and 

spreading antimicrobial resistance. This class carries 

more than 40 resistance genes related to aminoglycosides, 

beta-lactams, chloramphenicol, macrolides, 

sulfonamides, and disinfectants [16].  

This study investigated the blaTEM and blaSHV resistance 

genes in Proteus spp. and their correlations with antibiotic 

resistance patterns in hospitalized patients. 

 

MATERIAL AND METHODS 

The setting, bacterial isolates, and study design.  

From March 2018 to April 2019, we collected 112 blood 

samples from the inpatients at Ayatollah Rohani Hospital, 

Babol, Northern Iran. Proteus spp. were identified based 

on conventional biochemical and microbiological tests, 

i.e., biotyping assays. All isolates were stored in Luria 

Bertani broth (Merck, Germany) containing 20% glycerol 

at -80 ⁰C for further use.  

The Ethical Committee of Babol University of Medical 

Sciences approved this study (Code No.: 

MUBABOL.REC.1394.162]. 

Disk diffusion (DD) assay. Susceptibility testing was 

performed with ten antibiotics by standard disk diffusion 

(DD) technique according to CLSI (Clinical and 

Laboratory Standards Institute) standard procedure [17]. 

The antibiotics included gentamicin (10 𝜇g), cefepime (30 

𝜇g), amikacin (30 𝜇g), ciprofloxacin (5 𝜇g), imipenem (10 

𝜇g), cefotaxime (30 𝜇g), ampicillin (10𝜇g), 

piperacillin/tazobactam (30 𝜇g), sulfamethoxazole (100 

𝜇g), and tetracycline (10 𝜇g) (MAST Diagnostics, 

Merseyside, UK). Escherichia coli ATCC 25922 was 

used as positive quality control. 

Agar dilution (AD) method.  After preparing stock 

solution from antibiotics according to CLSI 2018 standard 

[17], 1.5×108 CFU/ml of microbial suspensions were 

cultured on Mueller-Hinton Agar containing the desired 

antibiotics (MAST Diagnostics, Merseyside, UK) and 

incubated at 37 °C for 18 to 24 h. A plate containing a 

medium with no antibiotics was included in assays as the 

negative control, and results were evaluated according to 

the CLSI2018 standard table. 

 Detection of blaSHV and blaTEM genes. According to 

the manufacturer's instructions, DNA extraction from all 

isolates was performed using a high pure PCR template 

preparation kit (Roche, Germany). The extracted DNAs 

were stored at -20 °C for subsequent steps. The ESBL-

encoding loci, blaTEM, and blaSHV were amplified by 

conventional PCR using the primers and conditions 

described by others (Table 1). The 60 µl PCR reactions 

contained 10 µl of extracted template DNA, 5 µl of 10x 

buffer, 1.5mM MgCl2, 0.2mM dNTPs, 50 pMole of each 

primer (Copenhagen, Denmark), 1.5U of Taq DNA 

polymerase (Amplicon Co., Denmark) and ddH2O to the 

final volume. Amplification was performed in a 

thermocycler (Corrbet, Australia) (Table 1), and PCR 

products were electrophoresed in 1.5% agarose gel. The 

PCR products were sequenced in both directions using the 

same primers used in amplification in an automated DNA 

sequencer device (Forster, USA). The standard strain 

integron-positive Proteus spp. (ATCC1209) was used as 

a positive control and integron-negative Proteus spp. 

(ATCC1053) as a negative control. The generated 

sequences were analyzed at the National Center for 

Biotechnology Information (NCBI), available at the 

(http://www.ncbi.nlm.nih.gov/BLAST/) website. 

 
Table 1. Primers and PCR programs for amplifying blaTEM and blaSHV genes  

 PCR Condition  

Target Primer Primer sequence 
Product 

size (bp) 

No. 

Cycles 
Denaturation Annealing Extension 

Final 

Extension 
Reference 

blaTEM 

TEM-F 
5'-ATGAGTATTCAACATTTCCG-

3' 
851 30 94 °C for 30 S 

55 °C for 

30 S 

72 °C for 1 

min 

72 °C for 4 

min 
[32] 

TEM-R 
5'-TTAATCAGTGAGGCACCTAT-

3' 

blaSHV 

SHV-F 
5'-ATGCGTTATATTCGCCTGTG-

3' 
735 35 

94 °C for 1 

min 

60 °C for 1 

min 

72°C for 1 

min 

72 °C for 

10 min 
[33] 

SHV-R 
5'-TGCTTTGTTATTCGGGCCAA-

3' 

 

RESULTS 

Bacterial Isolation. From March 2018 to April 2019, 

30 clinical Proteus spp. isolates were collected from 30 

patients admitted to Ayatollah Rohani Hospital (Babol, 

Northern Iran). Other isolates were excluded from the 

study.  

Antibiotic Resistance Profile. MDR was evaluated by 

DD assay and AD method. All strains were screened for 

resistance to 10 antimicrobials by DD. The resistance 
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rates to tetracycline, sulfamethoxazole, ampicillin, 

cefotaxime, imipenem, gentamicin, cefepime and 

ciprofloxacin were 90%, 83.3%, 51.7%, 48.2%,17.2%, 

13.7%, 10.3% and %3.4, respectively. In contrast, there 

was no resistance to amikacin and 

piperacillin/tazobactam. In the DD method, 86.6% of 

isolates were MDR phenotype. In the agar dilution 

method, the resistance rate to sulfamethoxazole, 

ampicillin, tetracycline, cefotaxime, and cefepime were 

80%, 50%, 13.7%, 13.7%, and 10.3%, respectively.  No 

resistance to ciprofloxacin, gentamicin, amikacin, 

imipenem, and piperacillin/tazobactam was detected 

(Table 2). Also, in the AD method, 60% of isolates were 

MDR phenotype (Tables 3 and 4). 

 
Table 2. Frequency of Antibiotic susceptibility pattern of Proteus spp. evaluated by disk diffusion (DD) and Agar dilution (AD) 

methods 

 
Table 3. Multi-drug resistant (MDR) pattern in isolated antibiotic-resistant Proteus spp. 

T = Tetracycline; CTX = Cefotaxime; SXT = sulfamethoxazole; GM = Gentamycin; Ap = Ampicillin; CPM = Cefepime; CP = 

Ciprofloxacin 

Antibiotics Method Resistant Intermediate susceptible Total number P-value 

Ciprofloxacin Disk diffusion n =1 (3.4%) n =2 (6.8%) n =27(90%) n = 30 NS* 

Agar dilution n =0 (0.0%) n =1 (3.4%) n =29 (96.6%) n = 30 

Amikacin Disk diffusion n = 0 (0.0%) n = 2 (6.8%) n = 28 (93.3%) n = 30 <0.001 

Agar dilution n =0 (0.0%) n =0 (0.0%) n =30 (100%) n = 30 

Tetracycline Disk diffusion n = 27 (90%) n = 0 (0.0%) n = 3 (10.3%) n = 30 <0.001 

Agar dilution n = 4 (13.7%) n =23 (76.6%) n =3 (10.3%) n = 30 

Gentamicin Disk diffusion n = 4 (13.7%) n = 0 (0.0%) n = 26 (86.6%) n = 30 NS 

Agar dilution n =0 (0.0%) n =3 (10.3%) n =27 (90%) n = 30 

Cefotaxime Disk diffusion n = 14 (48.2%) n = 9 (31%) n = 7 (23.3%) n = 30 NS 

Agar dilution n = 4 (13.7%) n =10 (34.4%) n =16 (53.3%) n = 30 

Ampicillin Disk diffusion n = 15 (51.7%) n = 3 (10.3%) n = 12 (40%) n = 30 NS 

Agar dilution n =15 (50%) n =0 (0.0%) n =15 (50%) n = 30 

Cefepime Disk diffusion n = 3 (10.3%) n = 21 (72.4%) n = 6 (20%) n = 30 <0.05 

Agar dilution n =3 (10.3%) n =0 (0.0%) n =27 (90%) n = 30 

Imipenem Disk diffusion n = 5(17.2%) n = 1 (3.4%) n = 24 (80%) n = 30 NS 
Agar dilution n =0 (0.0%) n = 5 (17.2%) n = 25 (83.3%) n = 30 

Piperacillin tazobactam Disk diffusion n = 0 (0.0%) n = 0 (0.0%) n = 30 (100%) n = 30 <0.001 

Agar dilution n =0 (0.0%) n =0 (0.0%) n =30 (100%) n = 30 
sulfamethoxazole Disk diffusion n = 24 (80%) n = 0 (0.0%) n = 6 (20%) n = 30 <0.001 

Agar dilution n = 24 (80%) n =0 (0.0%) n =6 (20%) n = 30 

M
e
th

o
d

 

MDR Antibiotics Resistant sample count (%) Total number (%) 

D
is

k
 d

if
fu

si
o
n
 

 

Double-resistant 

T+ SXT n = 5 (16.6%) 

n = 7 (23.3%) 

n
 =

 2
6

 (
8
6

.6
%

) 

T + CTX + SXT n = 1 (3.3%) 

T + CTX  n = 1 (3.3%) 

 
Triple-resistant 

T + GM + STX n = 4 (13.3%) 

n = 9 (30%) 
T + CTX + SXT n = 1 (3.3%) 

T +AP + CTX n = 3 (10%) 
T + CTX + CPM n = 1 (3.3%) 

Quadruple-

resistant 

T + CTX + AP + SXT n = 4 (13.3%) 
n = 6 (20%) T + CTX + CPM +SXT n = 2 (6.6%) 

Quintuplet-

resistant 

T + CTX + AP + CP + SXT n = 3 (10%) 
n = 3 (10%) 

Sextuplet-

resistant 

T + GM + CTX + AP + CP+ SXT n = 1 (3.3%) 
n = 1 (3.3%) 

A
g

ar
 d

il
u
ti

o
n
 

Double-resistant AP + SXT n = 10 (33.3%) 
n = 12 (40%) 

n
 =

 1
8

 (
6
0
%

) 

CTX + CPM n = 2 (6.6%) 

Triple-resistant 

T + AP + SXT n = 3 (10%) 
n = 5 (16.6%) 

CTX + AP + SXT n = 2 (6.6%) 

Quadruple-

resistant 

T + CTX + CPM + SXT n = 1 (3.3%) 

n = 1 (3.3%) 
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PCR amplification of Gene Cassettes. Of 30 Proteus 

spp. isolates, 7 (23.3%) and 18 (60%) were positive for 

blaTEM and blaSHV genes, respectively (Fig. 1). 

BLAST and Nucleotide Sequence Accession 

Number. The positive blaTEM and blaSHV strains were 

sequenced and blasted against similar sequences in the 

Genbank database. After alignment, the homologous 

sequences were excluded, and the novel ones were 

deposited in the GenBank database under the accession 

numbers MH724198, MH724199, MH724200, and 

MH724201. 

 

 

Fig. 1. PCR amplification of blaTEM (a) and blaSHV (b) genes. Lane M: DNA size marker (100bp); C-: negative control (ATCC 1053); 

C+: positive control (ATCC 1209). 

 

Table 4. Correlation between blaTEM and blaSHV genes and antibiotic resistance  

Antibiotics 

Antibiotic 

evolution 

method 

Presence/Absence of Genes 

Antibiotic resistance pattern 

P-value 
Resistant Sensitive Total samples 

C
ip

ro
fl

o
x

ac
in

 

Agar 

Dilution 

TEM TEM+ 0 (0%) 7 (100%) n = 7 NS* 

TEM- 1 (4.3%) 22 (95.7%) n = 23 

SHV SHV+ 0 (0%) 18 (100%) n = 18 NS 

SHV- 1 (8.3%) 11 (91.7%) n = 12 
Disk 

Diffusion 

TEM TEM+ 1 (14.3%) 6 (85.7%) n = 7 NS 

TEM- 2 (8.7%) 21 (91.3%) n = 23 

SHV SHV+ 1 (5.6%) 17 (94.4%) n = 18 NS 

SHV- 2 (16.7%) 10 (83.3%) n = 12 

A m i k a c i n
 TEM TEM+ 0 (0%) 7 (100%) n = 7 < 0.001 
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Agar 
Dilution 

TEM- 0 (0%) 23 (100%) n = 23 

SHV SHV+ 0 (0%) 18 (100%) n = 18 < 0.001 
SHV- 0 (0%) 12 (100%) n = 12 

Disk 

Diffusion 

TEM TEM+ 0 (0%) 7 (100%) n = 7 NS 

TEM- 2 (8.7%) 21 (91.3%) n = 23 

SHV SHV+ 1 (5.6%) 17 (94.4%) n = 18 NS 

SHV- 1 (8.3%) 11 (91.7%) n = 12 

T
et

ra
cy

cl
in

e 

Agar 

Dilution 

TEM TEM+ 6 (85.7%) 1 (14.3%) n = 7 NS 

TEM- 21 (91.3%) 2 (8.7%) n = 23 

SHV SHV+ 15 (83.3%) 3 (16.7%) n = 18 NS 
SHV- 12 (100%) 0 (0%) n = 12 

Disk 

Diffusion 

TEM TEM+ 6 (85.7%) 1 (14.3%) n = 7 NS 

TEM- 21 (91.3%) 2 (8.7%) n = 23 

SHV SHV+ 15 (83.3%) 3 (16.7%) n = 18 NS 

SHV- 12 (100%) 0 (0%) n = 12 

G
en

ta
m

ic
in

 

Agar 

Dilution 

TEM TEM+ 0 (0%) 7 (100%) n = 7 NS 

TEM- 3 (13%) 20 (87%) n = 23 
SHV SHV+ 1 (5.6%) 17 (94.4%) n = 18 NS 

SHV- 2 (16.7%) 10 (83.3%) n = 12 

Disk 
Diffusion 

TEM TEM+ 0 (0%) 7 (100%) n = 7 NS 
TEM- 4 (17.4%) 19 (82.6%) n = 23 

SHV SHV+ 2 (11.1%) 16 (88.9%) n = 18 NS 

SHV- 2 (16.7%) 10 (83.3%) n = 12 

C
ef

o
ta

x
im

e 

Agar 

Dilution 

TEM TEM+ 5 (71.4%) 2 (28.6%) n = 7 NS 

TEM- 9 (39.1%) 14 (60.9%) n = 23 

SHV SHV+ 10 (55.6%) 8 (44.4%) n = 18 NS 
SHV- 4 (33.3%) 8 (66.7%) n = 12 

Disk 

Diffusion 

TEM TEM+ 6 (85.7%) 1 (14.3%) n = 7 NS 

TEM- 17 (73.9%) 6 (26.1%) n = 23 

SHV SHV+ 15 (83.3%) 3 (16.7%) n = 18 NS 
SHV- 8 (66.7%) 4 (33.3%) n = 12 

A
m

p
ic

il
li

n
 

Agar 
Dilution 

TEM TEM+ 4 (57.1%) 3 (42.9%) n = 7 NS 

TEM- 11 (47.8%) 12 (52.2%) n = 23 
SHV SHV+ 9 (50%) 9 (50%) n = 18 NS 

SHV- 6 (50%) 6 (50%) n = 12 

Disk 

Diffusion 

TEM TEM+ 5 (71.4%) 2 (28.6%) n = 7 NS 

TEM- 13 (56.5%) 10 (43.5%) n = 23 
SHV SHV+ 10 (55.6%) 8 (44.4%) n = 18 NS 

SHV- 8 (66.7%) 4 (33.3%) n = 12 

C
ef

ep
im

e 

Agar 

Dilution 

TEM TEM+ 2 (28.6%) 5 (71.4%) n = 7 NS 

TEM- 1 (4.3%) 22 (95.7%) n = 23 

SHV SHV+ 3 (16.7%) 15 (83.3%) n = 18 NS 

SHV- 0 (0%) 12 (100%) n = 12 

Disk 
Diffusion 

TEM TEM+ 5 (71.4%) 2 (28.6%) n = 7 NS 

TEM- 19 (82.6%) 4 (17.4%) n = 23 
SHV SHV+ 14 (77.8%) 4 (22.2%) n = 18 NS 

SHV- 10 (83.3%) 2 (16.7%) n = 12 

Im
ip

en
em

 

Agar 

Dilution 

TEM TEM+ 1 (14.3%) 6 (85.7%) n = 7 NS 

TEM- 4 (17.4%) 19 (82.6%) n = 23 

SHV SHV+ 4 (22.2%) 14 (77.8%) n = 18 NS 

SHV- 1 (8.3%) 11 (91.7%) n = 12 

Disk 

Diffusion 

TEM TEM+ 1 (14.3%) 6 (85.7%) n = 7 NS 

TEM- 5 (21.7%) 18 (78.3%) n = 23 

SHV SHV+ 5 (27.8%) 13 (72.2%) n = 18 NS 

SHV- 1 (8.3%) 11 (91.7%) n = 12 

P
ip

er
ac

il
li

n
 t

az
o
b

ac
ta

m
 Agar 

Dilution 

TEM TEM+ 0 (0%) 7 (100%) n = 7 < 0.001 

TEM- 0 (0%) 23 (100%) n = 23 

SHV SHV+ 0 (0%) 18 (100%) n = 18 < 0.001 

SHV- 0 (0%) 12 (100%) n = 12 

Disk 
Diffusion 

TEM TEM+ 0 (0%) 7 (100%) n = 7 < 0.001 
TEM- 0 (0%) 23 (100%) n = 23 

SHV SHV+ 0 (0%) 18 (100%) n = 18 < 0.001 

SHV- 0 (0%) 12 (100%) n = 12 
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C
o

-

tr
im

o
x
a

zo
le

 Agar 
Dilution 

TEM TEM+ 5 (71.4%) 2 (28.6%) n = 7 NS 

TEM- 19 (82.6%) 4 (17.4%) n = 23 

 

 SHV SHV+ 14 (77.8%) 4 (22.2%) n = 18 NS 
SHV- 10 (83.3%) 2 (16.7%) n = 12 

Disk 
Diffusion 

TEM TEM+ 5 (71.4%) 2 (28.6%) n = 7 NS 
TEM- 19 (82.6%) 4 (17.4%) n = 23 

SHV SHV+ 14 (77.8%) 4 (22.2%) n = 18 NS 

SHV- 10 (83.3%) 2 (16.7%) n = 12 

 

DISCUSSION 

The prevalence of ESBL- producing Proteus spp. is 

increasing worldwide, including in the United States, 

Asia, and Europe [18]. In the present study, the prevalence 

of blaTEM and blaSHV were 23.3% and 60%. These 

differences in the distribution of blaTEM and blaSHV may be 

due to geographical distribution, type of organisms, and 

source of infections. In Iraq, the prevalence of blaTEM 

was 60% among P. mirabilis isolates [19], while in China, 

it was around 52% in the same bacteria [20]. In Argentina, 

investigating the resistance to β-lactam/β-lactamase 

inhibitors in enterobacteria revealed that all Proteus spp. 

isolates harbored the blaTEM gene [21]. In India, the blaTEM 

rate among P. mirabilis isolates was 81.9% [22], while in 

Egypt, it was 35% [23]. In Tehran, Iran,  Malekjamshidi 

et al. (2010) estimated blaTEM prevalence at 83% among 

ESBL-positive P. mirabilis specimens [24]. Other studies 

indicated variable rates ranging from 8.3% to 91% [25-

29]. 

In a study by Hamid et al., no P. mirabilis isolates in 

Iraq had blaSHV [19]. In India, the blaSHV prevalence among 

P. mirabilis isolates was 7% [22]. In Tehran, Iran, the 

prevalence of blaSHV prevalence was 8% in ESBL-positive 

P. mirabilis isolates [24]  

The correlation between blaTEM and blaSHV gene and 

resistance to some antibiotics showed a significant 

correlation. The blaTEM and blaSHV genes significantly 

correlated with the resistance to piperacillin/tazobactam 

obtained by the disk diffusion method. Also, there was a 

significant correlation between blaTEM and blaSHV genes 

and resistance to piperacillin/tazobactam and amikacin in 

the agar dilution method. According to the disk diffusion 

and agar dilution assays, piperacillin/tazobactam, 

amikacin, gentamicin, and imipenem are proper choices 

for treating Proteus spp. Given that most ESBL-positive 

strains showed increased resistance to tetracycline, 

sulfamethoxazole, cefotaxime, and ampicillin, blaTEM and 

blaSHV genes might help confer resistance to these 

antibiotics. Conza et al. (2014) showed a significant 

association between the blaTEM gene and resistance to 

amoxicillin-clavulanic acid [21]. Also, Li et al. (2022) 

showed a substantial correlation between blaTEM and 

resistance to chloramphenicol, ciprofloxacin, and 

trimethoprim-sulfamethoxazole in P. mirabilis isolates 

[20]. 

In our study, the highest antibiotic resistance rates were 

against sulfamethoxazole, tetracycline, and ampicillin. 

The results of MDR strains in both disk diffusion and agar 

dilution methods were 86% and 60%, almost similar to 

other studies in different countries [17, 26, 27, 30, 31]. 

Due to the high prevalence of MDR strains, which 

indicates misuse of antibiotics, studying the physiological 

properties of β-lactamase genes has received much 

attention. Proteus spp., an opportunistic bacterium, 

accounts for 10% of urinary tract infections. Therefore, 

identifying resistance genes is essential for implementing 

infection control programs and preventing the spread of 

resistant strains [10-13]. 
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